Холодное газодинамическое напыление металлов оборудование своими руками. Сущность и задачи газодинамического напыления. Принцип действия, плюсы и минусы ХГН

Напыление металла – это технология изменения структуры поверхности изделия с целью приобретения определенных качеств, повышающих эксплуатационные характеристики. Обработку выполняют путем нанесения однородного металлического слоя на деталь или механизм. В качестве расходного материала используют специальные порошковые составы, которые подвергают термической обработке и придают им значительное ускорение. При ударном соприкосновении с поверхностью частицы осаждаются на плоскости.

Технология появилась в начале XX века в качестве альтернативы традиционным способам поверхностной модификации металлов. По мере изучения и развития методов напыления металлических изделий была образована отдельная отрасль – порошковая металлургия. Это технология получения порошков для изготовления из них различных изделий.

В современной промышленности напыление металлов считается одним из самых экономичных способов обработки. По сравнению с объемным легированием технология дает возможность получить необходимые эксплуатационные свойства поверхности при меньших затратах.

Ультразвуковая обработка давлением и ультразвуковое упрочнение

Основными технологическими параметрами ультразвукового упрочнения (УЗУ) являются длительность воздействия (t), диаметр шарика (dш) или радиус скругления рабочей части инструмента (r), амплитуда колебаний (Ак), эффективная масса инструмента (Gин), продольная подача (s), число проходов (i), скорость движения упрочняемой детали (v), исходная шероховатость поверхности (Ra) и качество поверхностного слоя.
Для улучшения физико-механических свойств деталей применяют отделочно-упрочняющую обработку поверхностным пластическим деформированием (сферическим или цилиндрическим наконечником). При этом металл выступов неровностей перемещается в обоих направлениях от места контакта с деформирующим элементом. Высота неровностей уменьшается, образуя новый микрорельеф. Для получения требуемой шероховатости поверхности необходимо к деформирующему элементу приложить минимально необходимую силу, достаточную для протекания пластической деформации.

При обкатывании и раскатывании роликовыми и шариковыми головками, дорновании, протягивании выглаживающими протяжками возможно искажение формы нежестких деталей и деталей переменной жесткости. Сообщение деформирующему инструменту ультразвуковых колебаний (УЗК) снижает величину статической нагрузки при пластическом деформировании металлов.

Схема установки УЗУ (рис. 1) включает ультразвуковой генератор, магнитострикционный преобразователь 5, волновод 3 и деформирующий наконечник 2. Акустическая система укреплена в подвижном корпусе 4, который может перемещаться вдоль оси неподвижного корпуса. Установка и регулирование необходимой радиальной силы осуществляется при помощи тарированной пружины 7 и винта 8. Наконечник 2 совершает УЗК и с небольшой силой Р прижимается к обрабатываемой детали 1.

Рис. 1. Схема ультразвукового упрочнения подпружиненным шариком или алмазным наконечником

На практике в качестве инструмента могут применяться стальные или твердосплавные шарики, свободно или жестко связанные с волноводом преобразователя, а при алмазном выглаживании используются отполированные кристаллы алмаза, запаянные в стальные державки. Радиус закругления рабочей части алмазного наконечника 1. . . 4 мм и зависит от условий обработки, материала обрабатываемой поверхности и жесткости технологической системы. Установлено, что при воздействии УЗК с амплитудой Ак = 10 мкм скорость деформации поверхностных слоев возрастает в 100 раз и сопровождается упрочнением. В качестве оборудования для выполнения ультразвукового упрочнения используется серийное оборудование. Ультразвуковой излучатель закрепляется в резцедержателе (рис. 2) .

Основные факторы, влияющие на процесс образования покрытия из частиц при термическом напылении

Для начала просто перечислим все основные факторы, которые, по результатам практического опыта, оказывают влияние на образование покрытий. Эти факторы разобьем на пять больших независимых групп (внутри отдельных групп параметры могут зависеть друг от друга):

  1. Параметры напыления
  2. Параметры порошка
  3. Параметры субстрата
  4. Параметры движения устройства напыления относительно напыляемой детали
  5. Параметры охлаждения

Параметры напыления:

  • Атмосфера напыления: воздух, вакуум или вода (в особом случае плазменного напыления под водой)
  • Размер и форма пламени
  • Распределение температур в пламени
  • Светимость пламени
  • Термическая мощность пламени
  • Состав газов пламени
  • Скорость газов пламени
  • Расход газов пламени
  • Способ введения порошка (осевой или радиальный)
  • Скорость и давление порошкового газа
  • Состав порошкового газа
  • Расход порошкового газа
  • Массовый расход порошка

Параметры порошка:

  • Распределение частиц порошка по размерам
  • Химический состав простых частиц (параметр включает все физические свойства материала простых частиц, такие как КЛТР, теплопроводность, теплоемкость, температура плавления, прочность, хрупкость, твердость и другие)
  • Фазовый состав, геометрическое распределение и размер фаз в частицах агломератов
  • Химический состав отдельных фаз в частицах агломератов
  • Форма простых частиц или агломератов
  • Пористость простых частиц или агломератов
  • Удельный вес простых частиц или агломератов

Параметры субстрата:

  • Форма напыляемой поверхности
  • Вид шероховатости поверхности
  • Глубина шероховатости поверхности
  • Наличие дефектов поверхности
  • Наличие и вид загрязнения поверхности
  • Степень загрязнения поверхности посторонними веществами (например, маслом)
  • Твердость поверхности
  • Химический и фазовый состав субстрата (параметр включает все физические свойства материала, такие как КЛТР, теплопроводность и теплоемкость)
  • Химический состав оксидов на поверхности
  • Толщина оксидов на поверхности
  • Размер, масса и форма детали
  • Температура детали до напыления

Параметры движения устройства напыления относительно напыляемой детали:

  • Относительная скорость движения устройства напыления относительно напыляемой поверхности детали
  • Расстояние напыления
  • Угол напыления
  • Размер пятна напыления
  • Толщина слоя за один проход

Параметры охлаждения:

  • Вид вещества хладагента: сжатый воздух, вода, твердая углекислота или жидкий азот
  • Способ охлаждения: общее охлаждение всей детали; локальное охлаждение, совмещенное с устройством напыления; комбинированное охлаждение (локальное плюс общее)
  • Скорость и давление газообразного хладагента относительно охлаждаемой поверхности (включает коэффициент теплопередачи)
  • Наличие или отсутствие перекрещивания потоков напыления и охлаждения
  • Мощность общего охлаждения
  • Мощность локального охлаждения
  • Расстояние «пятна охлаждения» от «пятна напыления» при локальном охлаждении
  • Относительное расположение пятен напыления и охлаждения при их движении: пятно охлаждения «догоняет» или «бежит впереди» пятна напыления

Альтернативы гальваническому хромированию.

Превосходная износостойкость определяет использование гальванического хромового покрытия в авиакосмической и автомобильной промышленности. Твердый хром используется для защиты поверхности от абразивного износа и для восстановления изношенных деталей до первоначального размера и формы.

Технология нанесения покрытия из электролита с содержанием шестивалентного хрома применялась в течении последних 120 лет.

Однако токсичность хрома и хромсодержащих отходов стали причиной разработки новых технологий его нанесения.

Наиболее приемлемыми решениями проблемы является:

  • термическое напыление;
  • химическое осаждение из паровой фазы (CVD);
  • физическое осаждение из паровой фазы (PVD). Рассмотрим эти варианты подробнее.

Металлизация

При металлизации реализуются все три стадии образования покрытия. Перевод частиц присадочного материала в жидкую фазу обеспечивает при соприкосновении с поверхностью детали формирование значительной по площади зон контакта (рис. 3.2).

Высокая температура разогрева расплавленных частиц способствует активизации поверхностного слоя детали и вызывает развитие химического взаимодействия. Такое взаимодействие по площади контакта жидкой капли с поверхностью детали приводит к привариванию частиц присадочного материала, которое происходит путем образования очагов схватывания. Чем больше очагов схватывания, тем выше прочность сцепления частиц с основой. Приваривание частицы присадочного материала наступает только при достижении в зоне контакта с основой критической температуры химического взаимодействия (Tкр). Отсутствие требуемой степени нагрева приводит к появлению в металлизованном слое участков несплавления и пор.

Воздействие скорости частиц на качество и эффективность покрытия

  1. Частица покрытия достигла минимальной скорости удара, которая необходима для возбуждения механизма взаимодействия с поверхностью подложки (обрабатываемого образца). Эта так называемая «критическая скорость» влияет на свойства материала покрытия.
  2. Поскольку скорость удара выше критической скорости, деформация и качество сцепления частиц возрастают.
  3. Если скорость удара слишком высока («скорость эрозии»), происходит больше разрушения материала, чем его добавления. Покрытие не образуется.
  4. Чтобы образовалось плотное и хорошо сформированное покрытие, значение скорости удара частиц должно быть между значениями критической скорости и скорости эрозии.

Обкатывание и раскатывание поверхностей

Аналогично ультразвуковой упрочняющей обработке, на том же оборудовании выполняется отделочная и упрочняющая обработка наружных поверхностей деталей обкатыванием, а внутренних — раскатыванием.

Рис. 2. Ультразвуковое упрочнение поверхности вала на токарно-винторезном станке 16К20

Давление на ролик в зависимости от материала детали принимают 5. . . 20 МН/м2 при числе проходов до 4. Обкатывание обеспечивает шероховатость обработанной поверхности Ra = 0,4. . . 0,05 мкм. Инструмент для обкатывания, представленный на рис. 3, устанавливают в резцедержатель хвостовиком 7.

Рис. 3. Упрочняющая обработка наружных поверхностей деталей обкатыванием

Обкатывание обрабатываемой поверхности производится шариком 2, который упирается в наружную обойму подшипника 10, насаженного на ось 9, и удерживается от выпадения колпачком 8. Под действием усилия обкатывания шарик 2 отжимается и перемещает пиноль 3 в расточке корпуса 4, которая сжимает пружину 5. С помощью винта 6 регулируется сила сжатия пружины. Для обработки обкатыванием резцедержатель токарного станка с обкатным инструментом подводят до соприкосновения шарика с поверхностью предварительно обработанной детали. Затем винтом поперечной подачи суппорта по лимбу создают натяг 0,5. . . 0,8 мм. Устанавливают частоту вращения шпинделя 1200…1500 мин-1 и продольную подачу 5 = 0,3. . .1,5 мм/об. , включают станок и делают 2-3 продольных прохода вправо и влев°. В качестве СОЖ используют веретенное масло.

Шарики и ролики для обкатывания (раскатывания) изготовляют из закаленной стали или твердого сплава

Напыление порошкового материала

Напыляемый порошок поступает в горелку сверху из бункера через отверстие, разгоняется потоком транспортирующего газа (смесь «кислород – горючий газ») и на выходе из сопла попадает в пламя, где происходит его нагревание. Увлекаемые струей горячего газа частицы порошка попадают на напыляемую поверхность. В порошковых горелках, как и в проволочных, подача напыляемого материала в пламя и разгон образующихся расплавленных частиц может производиться при помощи струи сжатого воздуха.

В большинстве случаев в качестве горючего газа используют ацетилен. Можно также применять пропан, водород. Для напыления пластмасс чаще применяют пропан.

К агрегатам, в которых напыляемый материал подают в виде порошка, относят газопламенную горелку типа Rototec-80 швейцарской фирмы Castolin-Eutectic (рис. 2).

Рис. 2. Газопламенная горелка Rototec-80

Напыляемый материал с размером частиц до 100 мкм засыпают в специальную ёмкость конусообразной формы. Конструктивно газопламенная горелка выполнена таким образом, что при её работе ёмкость с порошком находится в верхней части от газового канала. Поэтому, кроме инжекции, значительную роль в равномерной подаче порошка в область нагрева играет сила гравитации. Горелка выполнена в переносном варианте. Габариты кейса 50030080 мм. При распылении порошковых материалов с различными теплофизическими свойствами у горелок предусмотрено регулирование рабочей смеси газов, что позволяет получать качественные покрытия как из тугоплавких (Al2O3 и TiO2), так и легкоплавких (бронза, баббит) материалов.

С помощью этой горелки можно осуществлять восстановление геометрических размеров посадочных мест крупногабаритных валов под подшипники качения и скольжения, коренных и шатунных шеек коленчатых валов ДВС, дизельных машин и компрессорных установок.

Способы напыления, применяемое оборудование

На заре развития технологии обработка изделий осуществлялась с помощью сопла горелки и обычного компрессора, которые обеспечивали нагрев расходного материала и скоростной перенос на осаждаемую поверхность. По мере развития технологии были разработаны новые методы получения защитного покрытия. Следующим этапом развития стало использование электродугового оборудования. Конструкция такого металлизатора проволочного типа была разработана в 1918 году.
Существует два вида процесса напыления:

  1. Газодинамическое. Обработка осуществляется мельчайшими частицами, размер которых не превышает 150 мкм.
  2. Вакуумное. Процедура протекает в условиях пониженного давления. Образование защитного слоя происходит в процессе конденсации напыляемого материала на базовой поверхности.

Рассмотрим основные способы обработки, а также особенности используемого оборудования для напыления.

Напыление в магнетронных установках

Технология магнетронной вакуумной металлизации основана на действии диодного газового разряда в скрещенных полях. В процессе работы установки в плазме тлеющего заряда образуются ионы газа, которые воздействуют на распыляемое вещество. Основными элементами магнетронной системы являются:

  • анод;
  • катод;
  • магнитный узел.


Функция последнего элемента заключается в локализации плазмы у основания распыляемого вещества – катода. Любая магнитная система состоит из центральных и периферийных магнитов постоянного действия. На катод подают постоянное напряжение от источника питания. Под действием тока происходит распыление мишени при условии, что заряд будет стабильно высоким на протяжении всей процедуры.
Преимущества магнетронного метода:

  • высокая производительность;
  • точность химического состава осажденного вещества;
  • равномерность покрытия;
  • отсутствие термического воздействия на обрабатываемую заготовку;
  • возможность использования любых металлов и полупроводниковых материалов.

С помощью установок получают тонкие защитные пленки в среде специального газа. Напыляемым материалом могут выступать металлы, полупроводники или диэлектрики. Скорость образования слоя зависит от силы тока и давления рабочего газа.

Ионно-плазменное напыление

Одна из разновидностей вакуумного напыления металла на поверхность. Метод является следующим этапом развития технологии термического осаждения, которая основана на нагреве исходных материалов до точки кипения с их дальнейшей конденсацией на заготовках.
В состав принципиальной схемы оборудования для ионно-плазменного насаждения входят следующие элементы:

  • анод;
  • катод-мишень;
  • термокатод;
  • камера;
  • заготовка.

Алгоритм действия установки:

  1. В камере создается пониженное давление.
  2. На термокатод, который является вспомогательным источником электронов, подается ток.
  3. Вследствие нагрева возникает термоэлектронная эмиссия.
  4. В камеру подают инертный газ. Наибольшей популярностью пользуется аргон.
  5. Между анодом и термокатодом возникает напряжение, которое инициирует образование плазменного тлеющего заряда.
  6. На катод подают мощный заряд.
  7. Положительные ионы воздействуют на распыляемый материал-мишень.
  8. Распыленные атомы осаждаются на заготовке в виде тонкого покрытия.

Ионно-плазменное осаждение используют в качестве декоративных или защитных покрытий, которые характеризуются высокой плотностью и прочностью, а также отсутствием изменений в стереохимическом составе.

Для изменения цвета изделия в технологический цикл добавляют реактивные газы: кислород, ацетилен, азот или углекислоту.

Плазменное напыление

Один из самых эффективных – метод диффузионной металлизации. Особенности технологического процесса:

  1. Рабочая температура плазмы может достигать 6000 ºC. Это способствует высокой скорости осаждения состава на поверхности. Длительность процесса – десятые доли секунды.
  2. Существует возможность изменения структурного состава поверхности заготовки. Вместе с горячей плазмой в верхние слои изделия могут диффундировать отдельные химические элементы.
  3. Плазменная струя отличается неизменными показателями давления и температуры. Это положительно влияет на качество напыления.
  4. Благодаря малому времени обработки заготовка не подвергается вредным поверхностным факторам, таким как перегрев или окисление.

В качестве источника энергии для образования плазмы используют искровой, импульсный или дуговой разряд.

Лазерное напыление

Лазерное напыление металла применяют для достижения следующих целей:

  • повышения прочности поверхностного слоя;
  • восстановления геометрии изделия;
  • снижения коэффициента трения;
  • защиты от коррозионных процессов.

В отличие от прочих методов металлизации источником тепла является энергия излучения лазера. Высокая точность фокусировки позволяет добиться концентрации энергии точно в зоне работы. Это снижает термическое воздействие на заготовку, что позволяет избежать изменения геометрии изделия и дает возможность осуществить напыление практически любого материала.

Благодаря высокой скорости охлаждения в поверхностном слое металла образуются структуры с высокой твердостью, что повышает эксплуатационные характеристики детали.

Вакуумное напыление

Вакуумное напыление металла – эффективный и универсальный способ металлизации поверхности. С помощью данного метода можно обрабатывать практически любое изделие. За время технологического цикла с материалом происходит ряд превращений:

  • испарение;
  • конденсация;
  • адсорбция;
  • кристаллизация.

Производительность процесса зависит от многих факторов: структуры заготовки, типа наносимого материала, скорости потока заряженных частиц и многих других.

Вакуумные установки отличаются принципом действия. Существует непрерывное, полунепрерывное, а также периодическое оборудование.

Метод химического хромирования

В качестве активного компонента для реализации такого напыления используют химические реагенты. Классический состав включает хлористый хром, натрий, уксусную кислоту, а также воду с раствором едкого натра. Процесс напыления выполняется при температуре порядка 80 °С. Начинается работа с подготовки материала. Обычно хромирование используют для обработки металлических поверхностей, в частности стали. Перед самой операцией материал подвергается первичному покрытию медным слоем. Далее производится химическое хромирование посредством пескоструйного аппарата, подключенного к компрессорной установке. После завершения процедуры изделие моется в чистой воде и просушивается.

Химическое осаждение из паровой фазы (CVD).

Метод позволяет получить высокочистый хром на поверхности изделия. Осаждение покрытия происходит при температуре выше 1000˚С. Из-за этого покрывать можно только изделия из твердых сплавов или керамики с высокой жаростойкостью.

Суть процесса: при сжигании газовой смеси происходит ее разложение на активные радикалы, ионы и электроны. Радикалы и ионы поступают на покрываемую поверхность, вступают в реакцию и образуют поликристаллическую или аморфную структуру. Регулируя состав горючей смеси и температуру процесса, возможно задать требуемые характеристики покрытия.

Уникальная технология плазмохимического осаждения

(PECVD) позволила получать аморфные и поликлисталлические пленки хрома на поверхности изделия при температуре процесса ниже, чем в процессе простого химического осаждения из паровой фазы (CVD).

Уникальность покрытия состоит так же в том, что возможно получить покрытие – «бутерброд», каждый слой которого будет иметь разные характеристики. Например, нижний слой покрытия будет иметь твердость 5 ГПа, а верхний – колоссальные 35 ГПа.

Недостатком метода является его высокая стоимость.

Проволоки и шнуровые материалы

Непрерывные электроды в виде проволок разной конструкции применяют преимущественно для металлизации поверхностей. Распыление металла непрерывного электрода требует его обязательного расплавления и перехода в жидкое состояние. При металлизации применяют проволочные материалы диаметром 0,5-5,0 мм, которые подразделяют на следующие группы: 1) проволоки сплошного сечения; 2) порошковые проволоки с металлической оболочкой; 3) порошковые проволоки с органической оболочкой.

Проволоки сплошного сечения, обычно из чистых металлов или сплавов на их основе производят методами волочения. Этот вид проволочных материалов получил наибольшее применение при металлизации. Подготовка проволоки перед напылением чаще всего заключается в обезжиривании и травлении. Обезжириванием удаляют органические загрязнения; травлением — оксидные пленки. Составы ванн и режимы обработки определяются маркой проволоки. Во многих случаях эффективна абразивноструйная очистка проволоки, электрополировка и другие способы обработки.

Из проволок на основе железа наибольшее распространение для металлизации получили углеродистые и низко- и среднелегированные проволоки. Углеродистые и низколегированные стали наиболее целесообразно применять при восстановительном ремонте газопламенным напылением или электродуговой металлизацией. Напыленные покрытия имеют достаточно высокую твердость. Восстановленные изделия по износу не уступают исходным. Для напыления, в основном, применяют проволоку из сталей Ст3; У 7; 40Х; 50ХФА и др. При напылении покрытий из стали У 7 микротвердость металла колеблется в пределах 2100-7750 МПа. Высокоуглеродистые стали и чугуны при их напылении образуют хрупкие покрытия, практически непригодные для эксплуатации.

Порошковые проволоки с металлической оболочкой перспективны для напыления композиционных покрытий. Порошковые проволоки производят вальцовкой ленты в трубку с одновременной засыпкой в образовавшуюся полость дисперсной шихты. При последующем волочении заполненной трубки получают проволоку различных диаметров. При этом легко регулируется отношение между массой порошка и оболочки. Возможны разнообразные сочетания в расположении оболочки и порошка (рис. 3.30).

Шнуровые материалы — это порошковые проволоки с органической оболочкой, которые применяют в основном для газопламенного напыления и реже для плазменного.

Рис. 3.30. Порошковые проволоки (I—III) и шнуровые материалы с органической оболочкой (IV).

Подготовку порошковых проволок перед напылением осуществляют посредством их обезжиривания протиркой сильными растворителями (бензином, ацетоном и др.) или абразивноструйной очисткой.

Прутки и трубчатые электроды

Стержни сплошного сечения изготавливают отливкой. Порошковые стержни формуют из измельченных материалов, например, оксидов, а затем подвергают спеканию. Обычно их диаметр составляет 3-6 мм, а длина 500-600 мм.

Газопламенное напыление и металлизация

Нагрев присадочного материала при газопламенном напылении и металлизации осуществляется за счет теплоты, выделяемой в результате сгорания различных горючих газов (ацетилена, пропан-бутана, природного газа и др.) в среде кислорода. Из горючих газов наибольшее применение получил ацетилен, сгорание которого в смеси с кислородом позволяет получать температуру пламени порядка 3100-3200 °С, что на 500-800 °С выше температуры его заменителей (табл. 3.5).

Типы пламени

В зависимости от соотношения горючего вещества и кислорода газовое пламя подразделяют на:

  • окислительное — с избытком кислорода;
  • нормальное — при паритетном соотношении горючего вещества и кислорода;
  • восстановительное — с избытком горючего газа.

Тип газового пламени, используемый при напылении, выбирается в зависимости от химического состава напыляемого металла (табл. 3.6).

Таблица 3.5. Термодинамические характеристики газовых смесей.

Параметры Горючий газ
Ацетилен С2Н2 Водород Н2 Метан СН4 Пропан С3Н8 Бутан С4Н10
Теплотворная способность, кДж/м3 52 800 10 060 33 520 87 150 116 480
Температура пламени в смеси с кислородом, °С 3100-3200 2100-2500 2000-2700 2400-2700 2400-2700
Удельный расход кислорода, м^м3 2,5 0,5 2,03 5,15 6,8

Мощность пламени выбирают в зависимости от размеров детали. При напылении стальных деталей применяют восстановительное (нормальное) или науглероживающее (с небольшим избытком ацетилена) пламя. Перед началом напыления деталь подогревают до температуры 50-100 °С. В процессе напыления необходимо следить, чтобы поверхность напыляемой детали не нагревалась выше 250 °С. Температуру можно контролировать с помощью термочувствительных карандашей.

По виду присадочного материала газопламенное напыление и металлизацию подразделяют на:

  • металлизацию стержневыми присадочными материалами;
  • порошковое напыление.

Проволочные распылители

Первый газопламенный проволочный распылитель разработал в 1913 г. М.У. Шооп. Стержневой присадочный материал с помощью механизма подачи направляется через центральное отверстие горелки в высокотемпературную зону пламени, где нагревается до температуры плавления. Полученная капля жидкого металла с его торца распыляется сжатым воздухом и в виде мелких частиц переносится на поверхность детали (рис. 3.6).

Таблица 3.6. Характеристики газопламенного напыления.

Распыляемый материал Дистанция напыления, мм Вид пламени
Ручное Механизированное
Нержавеющая сталь 80-150 150-250 Нейтральное
Высокоуглеродистая сталь 180-200 250-300 Нейтральное
Бронза 100-150 180-250 Слегка окислительное
Алюминий 100-150 180-250 Слегка восстановительное
Цинк 280-360 400-500 Нейтральное
Молибден 80-130 200-300 10% — окислительное

Рис. 3.6. Схема проволочного распылителя: 1 — воздушное сопло; 2 — газовое сопло; 3 — пруток; 4 — направляющая трубка.

В качестве стержневого присадочного материала используют прутки, проволоки и шнуровые материалы.

Прутковые материалы используются при напылении керамики. Прутки изготавливают из оксидов или карбидов металлов со связующим на жидком стекле диаметром до 8,0 мм. Содержание частиц твердых фаз в прутке может достигать 95 %. При нагреве прутка связующее выгорает, а зерна твердой фазы подаются на поверхность изделия. Основным недостатком использования керамики является прерывистость процесса, влияющая на качество поверхности покрытия. Наряду с прутковыми материалами используются и трубчатые полые стержни, заполненные зерновым релитом.

Распылитель для прутковых материалов имеет дополнительное воздушное сопло, направляющее воздух в радиальном направлении в зону плавления керамического стержня, где осевая скорость частиц невелика. «Загибающий» воздух дробит относительно крупные (100-160 мкм) расплавленные частицы на более мелкие (20-40 мкм) и направляет их под углом 45-50° к поверхности изделия. Дистанция напыления составляет 50 мм. Осевое расположение распылителя и малая дистанция напыления позволяли наносить покрытия на внутреннюю поверхность трубы диаметром 100 мм. Проволока для напыления применяется диаметром от 0,8 до 2,0 мм и изготавливается из различных материалов (коррозионно-стойкие и углеродистые стали, латуни, бронзы, баббиты, Al, Cu, Mo, Zn, Sn, Pb, сплавы на никелевой и кобальтовой основах). Производительность напыления и металлизации проволокой из цветных металлов — до 15 кг/ч, из стали и сплавов — до 9 кг/ч. Расход кислорода — 50 л/мин, расход ацетилена или пропана — до 20 л/мин. Давление воздуха — 0,5 МПа.

При газопламенном проволочном напылении в получаемом покрытии содержится меньше оксидов, чем при порошковом напылении. Это имеет особо важное значение для получения коррозионно-стойких покрытий с низкой пористостью. Для снижения степени окисления присадочного материала камеру сгорания приближают к выходному отверстию сопла. Однако относительно малая скорость движения частиц при газопламенном напылении проволокой не обеспечивает формирования высокоплотного покрытия.

В последние десятилетия наряду с проволоками все большее применение находят шнуровые присадочные материалы. Прочность и эластичность гибких шнуров позволяет пользоваться ими так же, как и проволокой и наносить покрытия с помощью газопламенных аппаратов проволочного типа.

Шнуровые материалы состоят из органического связующего, составляющего оболочку, и порошкового наполнителя, включающего высокотвердые компоненты и соединения, обеспечивающие протекание экзотермических реакций и синтезирование новых фаз в процессе напыления. Это позволяет повысить показатели адгезионной и когезионной прочности.

В шнуровых материалах используют порошковые наполнители на основе самофлюсующихся сплавов систем Ni(Co)-Cr-B-Si и в смесях с карбидом вольфрама или оксидами алюминия, титана, хрома, циркония. Шнуры производятся диаметром от 4,0 и 7,0 мм и размером зерен литого карбида вольфрама в диапазоне от 0,1 до 2,5 мм, причем для конкретных видов изнашивания применяются специальные комбинации мелкозернистого и крупнозернистого карбида вольфрама. Равномерное распределение зерен карбидов в порошковом шнуре обеспечивает наиболее благоприятное их расположение на напыляемой поверхности, что приводит к повышению износостойкости наплавленного слоя (рис. 3.7).

Матрица наплавленного слоя, представляющая собой никелевый самофлюсущийся сплав системы Ni-Cr-B-Si, обеспечивает хорошее смачивание зерен карбидов, обладает низкой температурой плавления (950-1050 °С), имеет высокую текучесть и отличается высокой стойкостью к воздействию кислот, щелочей и других коррозионно-активных сред.

Рис. 3.7. Технология ручной газопламенной наплавки шнурового материала «Сфекорд-HR».

Порошковый распылитель

Напыление порошками позволяет в широких пределах регулировать состав наносимых покрытий. В зависимости от места подвода порошка в горелку и его транспортирования в зону пламени газопорошковое напыление подразделяют на два способа.

  1. Порошок из питателя (рис. 3.8) поступает в центральный канал горелки, захватывается транспортирующим газом и подается в факел ацетиленокислородного пламени, струей которого оплавляется и направляется на поверхность детали, образуя заданный слой покрытия.

Рис. 3.8. Схема газопламенного напыления с вводом порошка в зону пламени транспортирующим газом: 1 — сопло; 2 — пламя; 3 — покрытие; 4 — деталь; 5 — кислород и горючий газ; 6 -транспортирующий газ; 7 — напыляемый порошок

Порошковая струя окружена кольцом пламени. При перемешивании струй пламени и газопорошковой взвеси происходит теплообмен. Частицы нагреваются до температуры плавления и переносятся на поверхность детали.

  1. Порошок из бункера (рис. 3.9) подается с внешней стороны мундштука в зону пламени, где его частицы оплавяются и направляются газовым потоком на поверхность напыляемой детали.

Применение при первом способе напыления транспортирующего газа, обычно инертного, для подачи порошка позволяет уменьшить его окисление, однако усложняется схема подачи и конструкция газовой горелки. Второй способ характеризуется большей простотой оборудование и облегчается выбор оптимального режима.

Наиболее качественные покрытия получаются при первоначальном напылении подслоя термореагирующим порошком толщиной 0,05-0,15 мм, а затем основного слоя износостойким порошковым сплавом толщиной 2 мм. Подслой и основной слой наносят при одних и тех же режимах напыления:

  • давление кислорода 0,35-0,45 МПа;
  • давление ацетилена 0,03-0,05 МПа;
  • расход кислорода 960-1100 л/ч;
  • расход ацетилена 900-1000 л/ч;
  • расстояние от среза сопла мундштука до наплавляемой поверхности 160-200 мм;
  • продольная подача 3-5 мм/об;
  • расход порошка 2,5-3 кг/ч.

Рис. 3.9. Схема газопламенного напыления с внешним вводом порошка.

Процесс газопламенного напыления можно проводить с одновременным оплавлением, что возможно лишь газовым пламенем. Плазменная струя из-за интенсивного неравномерного нагрева напыленного слоя не обеспечивает получения качественного покрытия. Напыление с одновременным оплавлением рекомендуется выполнять в такой последовательности:

  • подогреть всю деталь до температуры 250-300 °С;
  • на восстанавливаемые поверхности для их защиты от последующего окисления напылить слои толщиной 0,2-0,3 мм;
  • напыленный участок поверхности нагреть до состояния «запотевания», что характерно для процесса оплавления;
  • на предварительно оплавленный слой нанести новый, доводя его до состояния оплавления.

В процессе оплавления важно не допустить перегрева напыленного слоя до состояния жидкой ванны, а после оплавления обеспечить медленное охлаждение детали (в песке, асбесте, печи). Перегрев приводит к стеканию металла, образованию пор, а быстрое охлаждение — к возникновению трещин, к отслаиванию. Для восстановления деталей этим способом наиболее рационально применять порошковые сплавы ПГ-ЮН-01, ПГ-ЮН-03, ПГ-СРЗ, ПГ-СР4. Толщина напыленного слоя может доходить до 3 мм.

Высокоскоростное напыление

Высокоскоростное газопламенное напыление появилось в начале 80-х годов прошлого века и характеризуется скоростью газового потока до 1000 м/с. Плотность покрытий достигает 99 %. Увеличение скорости частиц при меньшей их температуре позволило снизить уровень окисленности напыляемого металла и повысить плотность порошкового покрытия. В качестве наносимого материала используют порошки карбидов, металлокарбидов, сплавов на основе Ni, Cu и др. Для увеличения скорости частиц увеличивают скорость истечения продуктов сгорания путем повышения давления в камере сгорания до 1,0—1,5 МПа. На рис. 3.10 представлена схема высокоскоростного распылителя системы ВСН.

Рис. 3.10. Схема высокоскоростного порошкового распылителя: 1 — подача порошка (осевая); 2 — подача кислорода; 3 — подача топлива; 4 — подача порошка (радиальная); 5 — ствол.

Рис. 3.11. Сопла распылителя: а — цилиндрическое; б — расширяющееся (сопло Лаваля)

В порошковых распылителях ВСН первого и второго поколений использовалось цилиндрическое сопло (рис. 3.11, а), а затем в конструкции соплового аппарата стало использоваться сопло Лаваля (рис. 3.11, б).

Для систем первого поколения давление в камере сгорания составляло 0,3-0,5 МПа, скорость частиц — 450 м/с для порошковых смесей системы WC-Co с грануляцией 10-45 мкм. Для систем второго поколения давление в камере сгорания повысилось до 0,6-1,0 МПа, что привело к увеличению скорости движения частиц до 600-650 м/с. Расход порошка составил 10 кг/ч. В системах третьего поколения с применением расширяющихся профильных сопел Лаваля расход порошка достигает 18 кг/ч.
Возможно Вас так же заинтересуют следующие статьи:

  • Комбинированный метод защиты металла
  • Химическое никелирование
  • Защита черного металла от коррозии
  • Горячее цинкование металлов. О чем говорится в Википедии
  • Цинкование ВГП труб

comments powered by HyperComments

Металлические защитные покрытия

В качестве анодных металлических покрытий выступают металлы, электрохимический потенциал которых меньше, чем у обрабатываемых материалов. У катодных он, наоборот, выше.

Катодные покрытия препятствуют проникновению агрессивных сред к основному металлу благодаря образованию механического барьера. Они лучше защищают поверхности от негативных воздействий, но только в случае неповрежденности.

В зависимости от способа нанесения металлические покрытия подразделяются на следующие виды.

Гальванические покрытия

Гальванизация – это электрохимический метод нанесения металлического защитного покрытия для защиты поверхностей от коррозии и окисления, улучшения их прочности и износостойкости, придания эстетичного внешнего вида.

Гальванические покрытия применяются в авиа- и машиностроении, радиотехнике, электронике, строительстве.

В зависимости от назначения конкретных деталей на них наносятся защитные, защитно-декоративные и специальные гальванические покрытия.

Защитные служат для изоляции металлических деталей от воздействия агрессивных сред и предотвращения механических повреждений. Защитно-декоративные предназначены для придания деталям эстетичного внешнего вида и их защиты от разрушительных внешних воздействий.

Специальные гальванические покрытия улучшают характеристики обрабатываемых поверхностей, повышают их прочность, износостойкость, электроизоляционные свойства и т.д.

Газотермическое напыление


Представляет собой перенос расплавленных частиц материала на обрабатываемую поверхность газового или плазменным потоком. Покрытия, образованные таким методом, отличаются термо- и износостойкостью, хорошими антикоррозионными, антифрикционными и противозадирными свойствами, электроизоляционной или электропроводной способностью. В качестве напыляемого материала выступают проволоки, шнуры, порошки из металлов, керамики и металлокерамики.

Выделяют следующие методы газотермическогого напыления:

  • Газопламенное напыление: самый простой и недорогой метод, применяемый для защиты крупных площадей поверхности от коррозии и восстановления геометрии деталей
  • Высокоскоростное газопламенное напыление: используется для образования плотных металлокерамических и металлических покрытий
  • Детонационное напыление: применяется для нанесения защитных покрытий, восстановления небольших поврежденных участков поверхности
  • Плазменное напыление: используется для создания тугоплавких керамических покрытий
  • Электродуговая металлизация: для нанесения антикоррозионных металлических покрытий на большие площади поверхности
  • Напыление с оплавлением: применяется тогда, когда риск деформации деталей отсутствует или он оправдан

Погружение в расплав

При использовании этого метода обрабатываемые детали окунаются в расплавленный металл (олово, цинк, алюминий, свинец). Перед погружением поверхности обрабатываются смесью хлорида аммония (52-56 %), глицерина (5-6 %) и хлорида покрываемого металла. Это позволяет защитить расплав от окисления, а также удалить оксидные и солевые пленки.

Данный метод нельзя назвать экономичным, так как наносимый металл расходуется в больших количествах. При этом толщина покрытия неравномерна, а наносить расплав в узкие зазоры и отверстия, например, на резьбу, не представляется возможным.

Термодиффузионное покрытие


Данное покрытие, материалом для которого выступает цинк, обеспечивает высокую электрохимическую защиту стали и черных металлов. Оно обладает высокой адгезией, стойкостью к коррозии, механическим нагрузкам и деформации.
Слой термодиффузионного покрытия имеет одинаковую толщину даже на деталях сложных форм и не отслаивается в процессе эксплуатации.

Плакирование

Метод представляет собой нанесение металла термомеханическим способом: путем пластичной деформации и сильного сжатия. Чаще всего таким образом создаются защитные, контактные или декоративные покрытия на деталях из стали, алюминия, меди и их сплавов.

Плакирование осуществляется в процессе горячей прокатки, прессования, экструзии, штамповки или сваривания взрывом.

Оборудование для холодного напыления

Существует два варианта защиты металлов от негативного воздействия внешних и рабочих факторов – легирование и напыление с вакуумным оборудованием. То есть, в сплав добавляют атомы химических элементов, придающих изделиям требуемые характеристики, или наносят на базовую поверхность защитное покрытие.

Чаще всего в отрасли металлизации используют технологию нанесения гальванических покрытий, применяют методы погружения деталей в расплав, задействуют в процессах обработки вакуумную среду, пользуются магнетронным оборудованием.

Иногда используют детонационно-газовое напыление, которое разгоняет частицы до невероятных скоростей. Широко применяют плазмотроны, электродуговую металлизацию, газопламенную обработку, ионное напыление. Задачи промышленности диктуют свои условия, и перед инженерами возникла необходимость создать недорогое, простое в обращении оборудование, для которого можно использовать свойства нагретого сжатого воздуха.

Появилось понятие порошковой металлизации с добавлением в металлический порошок мелкодисперсионной керамики либо частиц твердого металла. Используется для работы с алюминием, никелем, медью.

Результат экспериментов превзошел ожидания, позволив решить следующие задачи:

  • Нагревание сжатого воздуха в камере приводит к повышению давления, что вызывает увеличение скорости вытекания наплава из сопла в установках.
  • При наборе металлическими частицами в газовой среде высокой скорости они ударяются о подложку, размягчаются и прикипают к ней. А керамические частицы уплотняют образовавшийся слой.
  • Использование порошковой технологии подходит для металлизации пластичных металлов – медь, алюминий, никель, цинк. После напыления изделия можно поддавать механической обработке.

Благодаря успешной работе инженеров удалось создать переносной аппарат, позволяющий выполнять металлизацию покрытий на всех промышленных предприятиях и в домашних условиях. Требования для успешной работы оборудования – наличие компрессорной установки (или воздушной сети) с давлением сжатого воздуха в пять-шесть атмосфер и электропитание.

В таблице ниже приведены данные для хромирования алюминия в домашних условиях. Перед нанесением гальванического покрытия требуется «положить» на деталь промежуточный металлический слой, а потом выполнять напыление алюминия.

Таблица 1. Хромирование алюминия

Использование передового оборудования для металлизации изделий позволяет решить технические вопросы, связанные с повышением антикоррозийных, прочностных, эксплуатационных характеристик, а также приданием машинам, деталям и механизмам требуемых свойств для работы в сложных эксплуатационных условиях.

Лазерная сварка (2 видео)

Процесс напыления и рабочие установки (24 фото)

Наплавка поверхностных слоев

Наплавка поверхностных слоев представляет собой процесс нанесения с помощью электросварки (в среде защитных газов, электрошлаковой, под слоем флюса) или плазмотрона покрытия на заготовку. С помощью наплавки можно восстановить размеры изношенной детали или нанести на заготовку упрочняющее покрытие. Для получения покрытия используются материалы разного физического состояния: металлический порошок, порошковая проволока, металлическая проволока, куски рубленой проволоки (крупка), гибкие шнуровые материалы.

Рис. 6. Металлизация стальных конструкций в полевых условиях

Установки для наплавки состоят из двух частей — электромеханической и энергетической. Электромеханическое оборудование обеспечивает нанесение нового упрочняющего слоя металла на нужную часть заготовки, а энергетическое — расплавление присадки и соединение ее с заготовкой. Исходя из этого определяется состав оборудования. Общая схема энергетической части оборудования для наплавки плазмотроном аналогична показанной на рис. 4. В качестве электромеханической части во многих случаях применяются металлорежущие станки. При наплавке на цилиндрические поверхности это может быть токарный станок, при упрочнении плоских поверхностей — фрезерный и т. п. При наплавке больших плоских поверхностей наиболее целесообразно использование многоэлектродных автоматов или ленточных электродов.

При наплавке на сложные поверхности манипуляции с пистолетом, горелкой и держателем осуществляют вручную, иногда в полуавтоматическом и реже автоматическом режиме при наличии дополнительных устройств или специальных манипуляторов Общий вид установки для механизированной плазменной наплавки порошком цилиндрических деталей показан на рис. 7, а, на рис. 7, б — ручная наплавка упрочняющего покрытия на пуансон.

Смесь горючего газа (пропана, пропан-бутана, пропилена, природного газа) сжигается в каталитической камере сгорания пистолета, генерируя высокоскоростную струю продуктов сгорания Сюда подается материал покрытия в форме сплава или композитного порошка Он нагревается в камере сгорания и ускоряется в струе, формируя покрытие при ударе частиц о подложку. Пистолет AC-HVAF, например, ускоряет частицы порошка до скоростей 700. . .800 м/с и формирует струю диаметром более 16 мм и длиной свыше 250 мм, что гораздо больше дистанции напыления, которая обычно составляет 125. . .180 мм. Диаметр потока напыляемых частиц в струе обычно составляет 3. . .5 мм. Толщина поверхностно- упрочненного слоя металла, образованного одним или несколькими слоями, может быть различной: чаще 0,5. . .10 мм, но можно нанести и более толстый слой, а масса наплавляемого металла — 3,5. . . 4,5 т, как при реставрации прокатных валков.

Рис. 7. Схема установки для наплавки металлическим порошком и выполнение наплавки в ручном режиме: 1 — коробка скоростей; 2 — зажимной патрон; 3 — порошковый питатель; 4 — заготовка; 5 — распылительная горелка (пистолет); 6 — поддерживающие ролики; 7 — устройство подготовки воздуха; 8 — воздушный ресивер; 9 — баллоны с рабочими газами; 10 — компрессор; 11 — трубопровод подвода порошка к горелке.

Для восстановления деталей с большим износом используется электродуговая наплавка плавящимся электродом под слоем флюса с применением дополнительного присадочного материала. Компоновка установки аналогична приведенной на рис 6 7, но энергетическая часть вместо газоподающего оборудования включает электросварочное

Предприятия в Московской области

Московская обл., г. Сергиев Посад, пр. Красной Армии, д. 212В, корп. 8

Стаж (лет): 11

Сотрудников:
20
Площадь (м²):
1400
Станков:
30
Долбёжная обработка Заточка инструмента Зенкерование отверстий Зубодолбёжная обработка Зубофрезерная обработка Зубошлифовальные работы Координатно-расточные работы Накатка резьбы Нарезание резьбы Плоскошлифовальные работы Развертывание отверстий Слесарные работы Токарно-автоматные работы Электроэрозионная обработка Закалка ТВЧ Объёмная закалка Алитирование Анодирование Газодинамическое напыление Оксидирование Цементация Лазерная резка Плазменная резка Газовая сварка Газопрессовая сварка Диффузионная сварка Дугопрессовая сварка Контактная сварка Кузнечная сварка Роботизированная сварка Ручная дуговая сварка Сварка под слоем флюса Термитная сварка Порошковая покраска Работа с нержавеющей сталью Ультразвуковой контроль

Московская обл., г. Истра, ул. Панфилова, д. 11

Стаж (лет): 61

Сотрудников:
500
Площадь (м²):
10000
Станков:
86
Горизонтально-расточные работы Зенкерование отверстий Координатно-расточные работы Круглошлифовальные работы Механическая обработка на обрабатывающем центре Накатка резьбы Нарезание резьбы Плоскошлифовальные работы Протягивание Развертывание отверстий Резьбошлифовальные работы Сверление отверстий на станках с ЧПУ Сверление отверстий на универсальных станках Слесарные работы Токарная обработка на станках с ЧПУ Токарная обработка на универсальных станках Токарно-автоматные работы Фрезерная обработка на станках с ЧПУ Фрезерная обработка на универсальных станках Хонингование Шлицефрезерная обработка Электроэрозионная обработка Дисперсное твердение Закалка ТВЧ Нормализация Объёмная закалка Отжиг металла Отпуск металла Поверхностная закалка Сорбитизация Улучшение металла Бороалитирование Газодинамическое напыление Газотермическое напыление Гальваническое покрытие медью (меднение, омеднение) Гальваническое покрытие никелем (никелирование) Гальваническое покрытие хромом (хромирование) Гальваническое покрытие цинком (цинкование, оцинковка) Карбонитрация Нитроцементация Термодиффузионное цинкование Травление металла Химическое фосфатирование Хромоалитирование Хромосилицирование Лазерная резка Фигурная резка труб Вальцовка листового металла Вальцовка профиля Вальцовка пруткового металла Гибка профиля Гибка пруткового металла Гибка трубы Аргонная (аргонодуговая) сварка Газовая сварка Газопрессовая сварка Контактная сварка Вырубка металла Листовая штамповка Перфорация металла Пробивка металла Раскатка Изготовление деталей по чертежам заказчика Изготовление нестандартных металлоконструкций Лазерная гравировка Обработка алюминия Обработка титана Покраска кистью Покраска краскопультом Порошковая покраска Работа с нержавеющей сталью Работа с оцинкованной сталью

Московская обл., Мытищинский район, д. Красная Горка, ул. Школьная, д. 38

Стаж (лет): 6

Сотрудников:
?
Площадь (м²):
?
Станков:
?
Токарная обработка на станках с ЧПУ Дисперсное твердение Закалка ТВЧ Криогенная обработка Нормализация Объёмная закалка Отжиг металла Отпуск металла Поверхностная закалка Сорбитизация Улучшение металла Азотирование Алитирование Анодирование Борирование Бороалитирование Газодинамическое напыление Газотермическое напыление Гальваническое покрытие медью (меднение, омеднение) Гальваническое покрытие никелем (никелирование) Гальваническое покрытие хромом (хромирование) Гальваническое покрытие цинком (цинкование, оцинковка) Карбонитрация Многослойное покрытие медью и никелем Многослойное покрытие медью, никелем и хромом Нитроцементация Оксидирование Плакирование Силицирование Термодиффузионное цинкование Травление металла Химическое фосфатирование Хромоалитирование Хромосилицирование Цементация Цианирование Электрохимическая полировка металла Газовая/газопламенная/кислородная резка Гидроабразивная резка Лазерная резка Плазменная резка Поперечная резка рулонной стали Продольная резка рулонной стали Продольно-поперечная резка рулонной стали Резка арматуры Резка на ленточнопильном станке Резка пресс-ножницами Рубка на гильотинных ножницах Фигурная резка труб Вальцовка листового металла Вальцовка профиля Вальцовка пруткового металла Вальцовка трубы 3D гибка проволоки Гибка листового металла Гибка на прессе Гибка профиля Гибка пруткового металла Гибка трубы Аргонная (аргонодуговая) сварка Газовая сварка Газопрессовая сварка Диффузионная сварка Дугопрессовая сварка Контактная сварка Кузнечная сварка Лазерная сварка Наплавка Пайка Полуавтоматическая дуговая сварка Роботизированная сварка Ручная дуговая сварка Сварка арматуры Сварка взрывом Сварка под слоем флюса Сварка трением Сварка труб Термитная сварка Ультразвуковая сварка Химическая сварка Холодная сварка Электронно-лучевая сварка Волочение Вырубка металла Ковка Листовая штамповка Объёмная штамповка Перфорация металла Правка плоского металлопроката Прессование металла Пробивка металла Прокатка металла Прокатка-волочение Прокатка-прессование Пуклевание Раскатка Раскрой металла на координатно-пробивном прессе Художественная ковка Визуально-измерительный контроль Изготовление деталей по образцам заказчика Изготовление деталей по чертежам заказчика Изготовление нестандартных металлоконструкций Изготовление типовых металлоконструкций Контроль проникающими веществами Лазерная гравировка Магнитнопорошковый контроль Маркировка плазмой Обработка алюминия Обработка в галтовочном барабане Обработка в дробемёте Обработка титана Перемотка рулонов металла Пескоструйная обработка Покраска кистью Покраска краскопультом Порошковая покраска Работа с арматурой Работа с нержавеющей сталью Работа с оцинкованной сталью Разработка 3D моделей по чертежам Ультразвуковая толщинометрия Ультразвуковой контроль Химический анализ

Газодинамическое напыление

Основная цель газодинамического напыления металла заключается в придании поверхностям заготовок определенных свойств. Эта процедура выполняется не только в отношении металлических заготовок, но и других материалов. Она направлена на увеличение прочностных характеристик, электрической и тепловой проводимости. Данная технология обеспечивает защиту от коррозии, восстанавливает геометрические размеры. Предприятия, оказывающие услуги газодинамического напыления металла в Москве

, прекрасно справляются с этой задачей, ведь в их распоряжении находится высокотехнологичное оборудование.

В большинстве случаев, поверхности металлизируют, при этом наносимые покрытия обладают отличными адгезивными свойствами. Сцепление с основанием получается максимально надежным, изделия обретают дополнительную прочность. Напыляться могут исключительно металлические порошки либо субстанции, содержащие помимо металла, ещё и керамическую составляющую в определенных дозировках. Это существенно удешевляет методику формирования порошкового покрытия и не отражается на его характеристиках. Суть холодной методики газодинамического напыления состоит в нанесении и фиксации на поверхности элементов твердых металлических частиц либо смесей материалов. Их размер составляет 0,01-50 мкм. Они разгоняются до требуемой скорости в воздушной, озоновой либо гелиевой среде. Подобный материал именуют порошковым.

Это алюминиевые частички, никелевые, сочетания алюминия с цинком. Среда, при помощи которой перемешают материал, может быть горячей и холодной. В первом случае максимальный нагрев составляет 700 градусов. При взаимодействии с поверхностью изделия имеет место пластинчатая трансформация, кинематическая энергия трансформируется в адгезионную и тепловую. За счет этого формируется прочный поверхностный слой. Порошок наносят не только на поверхности из металла, но и на бетонные, стеклянные, керамические, каменные. Это существенно расширяет сферу использования методики формирования поверхностей со специфичными свойствами.

Газодинамическое напыление бывает высоким и низким – этот зависит от уровня давления. В первом случае рабочей средой, которая перемещает порошок, служит азот и гелий. Движущиеся металлические частицы обладают давлением свыше 15 атм. Во втором случае применяют сжатый воздух, подаваемый под давлением не более 10 атм. Отличия между этими видами состоят еще и в силе подогрева, расходе рабочей среды. Напыление выполняется в несколько этапов, включающих:

  1. Подготовку поверхности к нанесению порошка (используют механический либо абразивный метод).
  2. Нагрев рабочей среды до необходимого температурного режима.
  3. Подачу нагретого газа в специальное сопло под требуемым давлением (газ подается вместе с порошком).
  4. Порошок обретает огромную скорость и соприкасается с поверхностью изделий.

Стоимость услуг газодинамического напыления металла в Московской области вполне доступная.

Адгезионные способы нанесения покрытий

Адгезионные (гальванические покрытия) получают путем осаждении требуемого металла на поверхность детали из раствора электролита с наложением электрического тока или без него. Гальванические процессы имеют ряд преимуществ:

  • позволяют наносить тонкие покрытия равномерной толщины от 0,05 до 0,5 мм с различной твердостью и износостойкостью;
  • не ухудшают структуру основного металла, поскольку он в процессе наращивания остается практически холодным;
  • позволяют одновременно обрабатывать большую группу деталей.

В то же время этим способам присущи ряд недостатков такие, как значительная сложность и большой объем работ при выполнении технологических процессов восстановления деталей, низкая скорость электролитического осаждения, снижение сопротивления усталости деталей, загрязнение окружающей среды отходами производства. Гальванические покрытия отличаются адгезионным характером связи с основой. Это определяет их низкую прочность сцепления с поверхностью детали.

Наиболее широкое применение нашли процессы хромирования и железнения, никелирования, применяемые для наружных и внутренних поверхностей деталей с износом, не превышающим 0,2-0,5 мм, высокой поверхностной твердостью и при нежестких требованиях к прочности сцепления покрытия с основным металлом.

Возможно Вас так же заинтересуют следующие статьи:

  • Производство стали в России
  • Факторы влияющие на равномерность гальванических покрытий
  • Свинцевание и его электролиты
  • Промывка или дренаж в процессе цинкования
  • Исследования травильных ванн горячего цинкования

Используемые материалы и оборудование

Химическую металлизацию, как уже говорилось выше, можно выполнять своими руками и в условиях домашней мастерской. При этом изделия, отличающиеся небольшими размерами и несложной формой, обрабатывают по такой методике даже без использования специального оборудования. Если же такое оборудование в вашем распоряжении имеется, то наносить слой металла химическим способом можно даже на габаритные детали сложной конфигурации.

Самостоятельно занимаясь выполнением такой процедуры, следует соблюдать предельную осторожность, так как при этом используются опасные для здоровья химические реактивы. Если правильно подготовить оборудование и материалы для выполнения химической металлизации, то своими руками в домашних условиях можно получать на различных изделиях покрытия, качество которых практически не отличается от тех, которые сформированы на заводе.

Реагенты для химической металлизации

В наборе для химической металлизации должны быть реактивы, обладающие свойствами активатора и восстановителя. Для выполнения данной процедуры потребуется также грунтовка, которая наносится на обрабатываемую поверхность, и лак, защищающий готовое покрытие от негативного влияния внешних факторов. Для нанесения финишного лакового покрытия следует выбирать материал, обладающий высокой твердостью и износостойкостью.

Чтобы окрасить наносимый металлический слой в желаемый цвет, можно использовать специальный красящий тонер. Грунтовка, о которой говорилось выше, необходима для того, чтобы улучшить адгезию наносимого металлического слоя с материалом, из которого изготовлено обрабатываемое изделие. Результат химической металлизации, выполняемой своими руками, не всегда может быть качественным. Однако нанесенное покрытие можно удалить, используя для этого специальные смывочные растворы.

Установка химической металлизации предназначается для нанесения покрытия на любые твердые поверхности

Метод вакуумного напыления

В этом случае речь идет о группе методов, которые предполагают формирование тонких пленок в вакууме при воздействии прямой конденсации пара. Технология реализуется разными путями, в том числе за счет термического воздействия, испарения электронными и лазерными лучами. Используется вакуумное напыление для повышения технических качеств деталей, оборудования и инструментов. К примеру, такая обработка позволяет формировать специальные «рабочие» покрытия, которые могут повышать электропроводность, изолирующие свойства, износостойкость и защиту от коррозии.

Технология применяется и для создания декоративных покрытий. В данном случае техника может задействоваться в операциях, требующих высокой точности. Например, вакуумное напыление используют в изготовлении часов с позолоченным покрытием, для придания эстетичного вида оправам для очков и т. д.

Область применения ХГН

Более подробно хотелось бы остановиться на сферах использования технологии холодного газодинамического напыления порошковыми материалами, чтобы наглядно показать насколько она сегодня востребована.

Устранение дефектов, восстановление поверхностей и герметизация

Все это – работа, которой могут заниматься даже малые предприятия. К примеру, в небольших мастерских можно ремонтировать детали из легких сплавов (части автомобильной конструкции, допустим), прежде всего, алюминиевых и алюминиевомагниевых. Причем, легко устраняются дефекты, возникшие как в процессе производства, так и в процессе эксплуатации.

А отсутствие сильного нагрева и низкая энергетика метода позволяют чинить даже тонкостенные изделия.

Отлично подходит ХГН и для восстановления изношенных поверхностей. Например, такой трудоемкий процесс, как “наращивание” металла в посадочных местах подшипников, теперь могут осуществлять даже малые предприятия, не говоря уже о восстановлении герметизации (когда применение жидких герметиков невозможно) в трубопроводах, теплообменниках или сосудах для рабочих газов, жидкостей.

Высокоточное восстановление деталей различных механизмов, токопроведение

ХГН

очень эффективен в ремонте сложных изделий, где требуется точное восстановление геометрических параметров, устранение скрытых дефектов, но при этом с сохранением всех эксплуатационных характеристик, а также товарного вида. Именно поэтому данный метод активно используется в оборонно-промышленном комплексе, железнодорожной и авиационной промышленности, сельском хозяйстве, газоперекачке и пр.

Не обойтись без этой технологии и в создании контактных площадок. Цены на оборудование для напыления металлов? Благодаря возможности легкого нанесения покрытий на любые металлические, керамические и стеклянные поверхности ХГН применяется и в производстве электротехнических изделий. Например, в процессах меднения, создании силовых токонесущих сетей, нанесении токовводов, изготовлении подслоев под пайку и т. д.

Антикоррозийная обработка и устранение глубоких дефектов

Напыление так называемого антифрикционного покрытия – высокоэффективный способ избавления от локальных повреждений (глубоких сколов, задиров, царапин). Это позволяет избежать процедуры полной перезаливки или даже замены изделия, что, естественно, экономически не выгодно.

А в антикорроизонной обработке и защите от высокотемпературной коррозии различных коммуникаций данному методу вообще нет равных. К слову, различные модификации оборудования ДИМЕТ ®

обеспечивают качественную обработку внутренней поверхности труб диаметром от 100 мм и длиной до 12 м.

Дополнительная информация:

Газодинамическим методом наносятся жаростойкие покрытия, которые обеспечивают защиту вплоть до 1000-1100 градусов Цельсия. Электропроводность в среднем составляет 80-90 % электропроводности объемного материала. Коррозионная стойкость зависит от характеристик агрессивной среды.

Работа оборудования ДИМЕТ, разработанного и серийно выпускаемого ” Обнинским центром порошкового напыления” (ООО “ОЦПН “), основана на эффекте закрепления частиц металла, если они движутся со сверхзвуковой скоростью, на поверхности при соударении с ней, газодинамическое напыление металлов ДИМЕТ. Технология позволяет наносить металлические покрытия не только на металлы, но и на стекло, керамику, камень, бетон. К настоящему времени технология ДИМЕТ позволяет наносить покрытия из алюминия, цинка, меди, олова, свинца, баббитов, никеля и наносить их не только на металлы, но и на стекло, керамику, камень, бетон.

Специалисты Плакарта производят покрытия газодинамическим способом для промышленного оборудования (например, на фото – антикоррозионное покрытие теплообменника без демонтажа). Кроме того, мы поставляем установки холодного газодинамического напыления под ключ (наладка, сервис, обучение).

В зависимости от состава расходного материала (порошка) и изменения режимов его нанесения можно получить однородное или композиционное покрытие с твердой или пористой структурой и своей функциональной задачей. Это может быть: восстановление геометрии изделия, упрочнение и защита металла от коррозии, повышение тепло- и электропроводности материала, а также образование износостойкого покрытия, выдерживающего воздействие химически активных сред, высоких тепловых нагрузок и т. д.

В описании изобретения Браунинга данные проблемы оговариваются, но не разрешаются. Выход из данного положения открывает метод напыления, в котором порошок не нагревается до расплавленного состояния. Идея о возможности “холодной сварки” мелких металлических частиц при высокоскоростном соударении их с твердой поверхностью высказана в изобретении Шестакова еще в 1967 году Предложение о холодной сварке частиц в динамическом режиме в свое время не получило развития.

Оборудование для холодного газодинамического напыления металлов? Т.к. для реализации режима холодного напыления необходимы были новые предложения по устройству соплового узла.

Газодинамическое напыление — это технология нанесения металлического покрытия на различные материалы и изделия с защитной или декоративной целью, при которой формирование поверхностного слоя происходит за счет удара частиц наносимого вещества о поверхность покрываемых заготовок. Газодинамическое напыление бывает холодным (ХГН) и импульсным (ИГН). В первом случае частицы не подвергаются нагреву, а их разгон обеспечивается с помощью сверхзвукового газового потока. Во втором же происходит средний нагрев и ускорение частиц серией ударных волн фиксированной частоты.

Покрытия из порошковой смеси: молибден + самофлюсующийся сплав

Наряду с никелем, кобальтом и медью, молибден — один из самых «благодарных» металлов для термического напыления из-за того, что его оксиды восстанавливаются при относительно высоком парциальном давлении кислорода (металл хорошо очищается от оксидов даже в нейтральном ацетиленокислородном пламени). Кроме того, молибден очень пластичен при высоких температурах, что имеет решающее значение для уплотнения покрытия при напылении

Важной особенностью молибдена является его высокая температура плавления (2620°C), которая, с одной стороны требует устройств напыления с высокой температурой пламени, но, с другой стороны, предоставляет расплавленным частицам молибдена очень высокую термическую энергию. Эта энергия выделяется в формирующемся покрытии при остывании частиц и приводит к нагреванию соседних частиц, а также поверхности субстрата, что при разумном использовании, может дать значительную прибавку в прочности связей

Покрытия из молибдена имеют достоинства при применении для пар трения (прекрасные антизадирные и антифрикционные свойства). В настоящее время в мировой автомобильной промышленности происходит вытеснение хромированных поршневых колец кольцами с плазменно напыленными молибденовыми покрытиями, которые имеют более высокий ресурс службы. Несмотря на несравненно более высокую цену молибденовых покрытий, внедрение их в этой области оказывается экономически выгодным.

Существует два основных вида молибденовых покрытий: покрытия из чистого молибдена (порошок для атмосферного плазменного напыления или проволока для газопламенного напыления) и покрытия из порошковой смеси молибдена и самофлюсующегося никелевого сплава. Газопламенное напыление молибденовой проволокой более старый, дешевый и распространенный процесс, но существенно лучшее качество имеют комбинированные плазменно напыленные покрытия молибден плюс самофлюсующийся сплав.

Рассмотрим механизм функционирования этого комбинированного покрытия:

Как известно, температура плавления самофлюсующихся сплавов лежит около 1050°C, тогда как молибден плавится при 2620°C. При нагревании в пламени такой порошковой смеси до температуры, достаточной для плавления частиц молибдена, автоматически образуются сильно перегретые капельки расплава самофлюсующегося сплава. Когда такие капельки попадают на поверхность субстрата, в них должно хватать энергии на восстановление оксидных пленок, образование металлургической связи с материалом субстрата и на растекание по поверхности до того, как они кристаллизуются. Из-за высокой температуры плавления, частицы молибдена кристаллизуются сразу же,

приходя на субстрат, при этом функция этих застывших частиц не менее важна: остывающие твердые частицы молибдена поддерживают частицы самофлюсующегося сплава дольше в расплавленном состоянии и создают собой механические препятствия для образования сплошной пленки расплава, что абсолютно необходимо для уменьшения усадочных напряжений растяжения в покрытии (см. предыдущую главу).

Таким образом, получается следующее принципиальное преимущество двухфазного покрытия из смеси порошков молибдена и самофлюсующегося сплава:При термическом напылении на холодный субстрат порошков молибдена или самофлюсующегося сплава по отдельности, нельзя получить плотные покрытия, тогда как из их смеси это возможно! На рисунках 47 и 48 приведены электронные микрофотографии поперечного шлифа покрытия Mo + NiCrBSi на титановом субстрате, полученного атмосферным плазменным напылением (однокатодный плазматрон А60 фирмы Thermico GmbH).

Светлая фаза – молибден, более темная – самофлюсующийся сплав.

Рис. 47. Покрытие Mo + NiCrBSi на титановом субстрате.

Рис. 48. Увеличенный фрагмент того же покрытия.

Для сравнения пористости и качества связи с субстратом приведем оптическую микрофотографию плазменно напыленного покрытия из чистого молибдена по результатам (рисунок 49):

Рис. 49. Покрытие из чистого молибдена.

Индивидуальная обработка

Каждый отдельный материал обрабатывается индивидуально.

Обработка материалов требует индивидуальной регулировки температуры и давления газа. Комбинация этих двух физических параметров определяет скорость частиц и качество покрытия. Диапазон оптимальной скорости распыления, ограниченный критической скоростью и скоростью эрозии, называется диапазоном осаждения. В рамках этого диапазона на качество нанесения покрытий влияют параметры.

Кандидаты физико-математических наук О. КЛЮЕВ и А. КАШИРИН.

Когда только появились первые металлические орудия труда, выяснилось, что, твердые и прочные, они сплошь и рядом портились под воздействием влаги. Шло время, люди создавали механизмы и машины, и чем более совершенными они становились, тем в более тяжелых условиях приходилось работать их металлическим деталям. Вибрации и знакопеременные нагрузки, огромные температуры, радиоактивное облучение, агрессивные химические среды — вот далеко не полный перечень «испытаний», которым они подвергаются. Cо временем люди научились защищать металл от коррозии, износа и других явлений, которые сокращают срок службы деталей. По сути, есть два подхода к обеспечению такой защиты: либо в основной металл добавляют легирующие элементы, которые придают сплаву искомые свойства, либо на поверхность наносят защитное покрытие. Условия работы деталей машин диктуют свойства, которыми должны обладать покрытия. Технологии их нанесения разнообразны: есть распространенные и относительно несложные, есть очень тонкие, позволяющие создавать покрытия с уникальными свойствами. А неугомонные инженеры продолжают изобретать все новые покрытия и придумывать способы их получения. Судьба этих изобретений может стать счастливой, если покрытие намного превосходит своих предшественников по полезным свойствам или если технология дает существенный экономический эффект. В разработке физиков из Обнинска соединились оба этих условия.

Летящие с огромной скоростью частицы металла при соударении с подложкой привариваются к ней, а частицы керамики уплотняют покрытие (а); на шлифе слоя металла видны застрявшие керамические частицы (б).

Схема (вверху) и общий вид (внизу) аппарата для напыления металлических покрытий.

С помощью аппарата можно наносить покрытия в любых помещениях и даже в полевых условиях.

За критическим сечением сопла возникает зона отрицательного давления, и сюда засасывается порошок. Благодаря этому явлению удалось упростить конструкцию питателя.

Дефекты в корпусных деталях (слева) и результат напыления (справа): а — трещина в автоматической коробке передач; б — каверна в головке блока цилиндра.

Покрытыми слоем меди или алюминия инструментами можно работать в пожароопасных помещениях: при ударе о металлические предметы они не дают искры.

ТЕМПЕРАТУРА ПЛЮС СКОРОСТЬ

Из способов металлизации поверхностей в современной технике чаще всего пользуются гальваническим нанесением и погружением в расплав. Реже используют вакуумное напыление, осаждение из паровой фазы и пр. Ближе всего к разработке обнинских физиков находится газотермическая металлизация, когда наносимый металл плавят, распыляют на мельчайшие капли и струей газа переносят их на подложку.

Металл плавят газовыми горелками, электрической дугой, низкотемпературной плазмой, индукторами и даже взрывчатыми веществами. Соответственно методы металлизации называют газопламенным напылением, электродуговой и высокочастотной металлизацией, плазменным и детонационно-газовым напылением.

В процессе газопламенного напыления металлический пруток, проволоку или порошок плавят и распыляют в пламени горелки, работающей на смеси кислорода с горючим газом. При электродуговой металлизации материал плавится электрической дугой. В обоих случаях капельки металла перемещаются к напыляемой подложке потоком воздуха. При плазменном напылении для нагрева и распыления материала используется струя плазмы, формируемая плазматронами разных конструкций. Детонационно-газовое напыление происходит в результате взрыва, разгоняющего металлические частицы до огромных скоростей.

Во всех случаях частицы напыляемого материала получают два вида энергии: тепловую — от источника нагрева и кинетическую — от газового потока. Оба этих вида энергии участвуют в формировании покрытия и определяют его свойства и структуру. Кинетическая энергия частиц (за исключением детонационно-газового метода) невелика по сравнению с тепловой, и характер их соединения с подложкой и между собой определяется термическими процессами: плавлением, кристаллизацией, диффузией, фазовыми превращениями и т.д. Покрытия обычно характеризуются хорошей прочностью сцепления с подложкой (адгезией) и, к сожалению, низкой однородностью, поскольку велик разброс параметров по сечению потока газа.

Покрытиям, которые создают газотермическими методами, присущ ряд недостатков. К ним относятся, прежде всего, высокая пористость, если, разумеется, не стоит цель специально сделать покрытие пористым, как в некоторых деталях радиоламп. Кроме того, из-за быстрого охлаждения металла на поверхности подложки в покрытии возникают высокие внутренние напряжения. Обрабатываемая деталь неизбежно нагревается, и если она имеет сложную форму, то ее может «повести». Наконец, использование горючих газов и высокие температуры в рабочей зоне усложняют меры по обеспечению безопасности персонала.

Несколько особняком стоит детонационно- газовый метод. При взрыве скорость частиц достигает 1000-2000 м/с. Поэтому основным фактором, определяющим качество покрытия, становится их кинетическая энергия. Покрытия отличаются высокой адгезией и низкой пористостью, но взрывными процессами крайне сложно управлять, и стабильность результато в гарантиро вать практически невозможно.

СКОРОСТЬ ПЛЮС ТЕМПЕРАТУРА

Желание создать более совершенную технологию возникло давно. Перед инженерами стояла цель — сохранить достоинства традиционных технологий и избавиться от их недостатков. Направление поиска было более или менее очевидно: во-первых, покрытия должны формироваться в основном за счет кинетической энергии частиц металла (нельзя допускать плавления частиц: это предотвратит разогрев детали и окисление подложки и частиц покрытия), и, во-вторых, частицы должны приобретать высокую скорость не за счет энергии взрыва, как в детонационно-газовом методе, а в струе сжатого газа. Такой метод назвали газодинамическим.

Первые расчеты и эксперименты показали, что создавать таким способом покрытия, обладающие вполне удовлетворительными характеристиками, можно, если использовать в качестве рабочего газа гелий. Такой выбор объяснялся тем, что скорость потока газа в сверхзвуковом соплепропорциональна скорости звука в соответствующем газе. В легких газах (водород из-за своей взрывоопасности не рассматривался) скорость звука гораздо выше, чем в азоте или воздухе. Именно гелий ускорял бы металлические частицы до высоких скоростей, сообщая им кинетическую энергию, достаточную для закрепления на мишени. Считалось, что использование более тяжелых газов, в том числе воздуха, обречено на неудачу.

Работа опытных напылительных установок дала неплохой результат: разогнавшиеся в струе гелия частицы из большинства промышленно применяемых металлов хорошо прилипали к подложке, образуя плотные покрытия.

Но полного удовлетворения инженеры не испытывали. Было понятно, что оборудование на легких газах неизбежно будет дорогим и сможет применяться лишь на предприятиях, выпускающих продукцию высоких технологий (только там есть магистрали со сжатым гелием). А магистрали со сжатым воздухом имеются практически в каждом цеху, на каждом предприятии автосервиса, в ремонтных мастерских.

Многочисленные эксперименты со сжатым воздухом вроде бы подтверждали худшие ожидания разработчиков. Однако интенсивный поиск все же позволил найти решение. Покрытия удовлетворительного качества получились, когда сжатый воздух в камере перед соплом нагрели, а в металлический порошок стали добавлять мелкодисперсную керамику или порошок твердого металла.

Дело в том, что при нагревании давление воздуха в камере в соответствии с законом Шарля повышается, а следовательно, повышается и скорость истечения из сопла. Частицы металла, набравшие в струе газа огромную скорость, при ударе о подложку размягчаются и привариваются к ней. Частицы керамики играют роль микроскопических кувалд — они передают свою кинетическую энергию нижележащим слоям, уплотняют их, снижая пористость покрытия.

Некоторые керамические частицы застревают в покрытии, другие отскакивают от него. Правда, таким способом получают покрытия только из относительно пластичных металлов — меди, алюминия, цинка, никеля и др. Впоследствии деталь можно подвергать всем известным способам механической обработки: сверлить, фрезеровать, точить, шлифовать, полировать.

ГЛАВНОЕ УСЛОВИЕ — ПРОСТОТА И НАДЕЖНОСТЬ

Старания технологов останутся втуне, если конструкторы не смогут создать простое, надежное и экономичное оборудование, в котором был бы реализован придуманный технологами процесс. Основой аппарата для напыления металлических порошков стали сверхзвуковое сопло и малогабаритный электрический нагреватель сжатого воздуха, способный доводить температуру потока до 500-600 o С.

Использование в качестве рабочего газа обычного воздуха позволило попутно решить еще одну проблему, которая стояла перед разработчиками систем на легких газах. Речь идет о введении напыляемого порошка в газовую струю. Чтобы сохранить герметичность, питатели приходилось устанавливать до критического сечения сопла, то есть порошок необходимо было подавать в область высокого давления. Чисто технические трудности усугублялись тем, что, проходя через критическое сечение, металлические частицы вызывали износ сопла, ухудшали его аэродинамические характеристики, не позволяли стабилизировать режимы нанесения покрытий. В конструкции аппарата с воздушной струей инженеры применили принцип пульверизатора, известный каждому еще из школьных опытов по физике. Когда газ проходит по каналу переменного сечения, то в узком месте его скорость увеличивается, а статическое давление падает и может даже быть ниже атмосферного. Канал, по которому порошок поступал из питателя, расположили как раз в таком месте, и порошок перемещался в сопло за счет подсоса воздуха.

В результате на свет появился переносной аппарат для нанесения металлических покрытий. Он имеет ряд достоинств, которые делают его очень полезным в различных отраслях промышленности:

для работы аппарата нужны всего лишь электросеть и воздушная магистраль или компрессор, обеспечивающий давление сжатого воздуха 5-6 атм и подачу 0,5 м 3 /мин;

при нанесении покрытий температура подложки не превышает 150 о С;

покрытия обладают высокой адгезией (40-100 Н/мм 2) и низкой пористостью (1-3%);

оборудование не выделяет вредных веществ и излучений;

габариты устройства позволяют использовать его не только в цеху, но и в полевых условиях;

можно напылять покрытия практически любой толщины.

В состав установки входят собственно напылитель массой 1,3 кг, который оператор держит в руке или закрепляет в манипуляторе, нагреватель воздуха, порошковые питатели, блок контроля и управления работой напылителя и питателя. Все это смонтировано на стойке.

Пришлось потрудиться и над созданием расходных материалов. Выпускаемые промышленностью порошки имеют слишком большие размеры частиц (порядка 100 мкм). Разработана технология, которая позволяет получать порошки с зернами размером 20-50 мкм.

ОТ КОСМИЧЕСКИХ АППАРАТОВ ДО СЕЯЛОК

Новый способ напыления металлических покрытий может применяться в самых различных отраслях промышленности. Особенно эффективен он при ремонтных работах, когда необходимо восстановить участки изделий, например, заделать трещину или раковину. Благодаря невысоким температурам процесса легко восстанавливать тонкостенные изделия, отремонтировать которые другим способом, например наплавкой, невозможно.

Поскольку зона напыления имеет четкие границы, напыляемый металл не попадает на бездефектные участки, а это очень важно при ремонте деталей сложной формы, например корпусов коробок передач, блоков цилиндров двигателей и др.

Устройства для напыления уже применяют в авиакосмической и электротехнической промышленности, на объектах атомной энергетики и в сельском хозяйстве, на авторемонтных предприятиях и в литейном производстве.

Метод может оказаться весьма полезным во многих случаях. Вот лишь некоторые из них.

Восстановление изношенных или поврежденных участков поверхностей.

С помощью напыления восстанавливают поврежденные в процессе эксплуатации детали редукторов, насосов, компрессоров, форм для литья по выплавляемым моделям, пресс-форм для изготовления пластиковой упаковки. Новый метод стал большим подспорьем для работников авторемонтных предприятий. Теперь буквально «на коленках» они заделывают трещины в блоках цилиндров, глушителях и пр. Без особых проблем устраняют дефекты (каверны, свищи) в алюминиевом литье.

Устранение течей.

Низкая газопроницаемость покрытий позволяет ликвидировать течи в трубопроводах и сосудах, когда нельзя использовать герметизирующие компаунды. Технология пригодна для ремонта емкостей, работающих под давлением или при высоких и низких температурах: теплообменников, радиаторов автомобилей, кондиционеров.

Нанесение электропроводящих покрытий.

Напылением удается наносить медные и алюминиевые пленки на металлическую или керамическую поверхность. В частности, метод экономически более эффективен, чем традиционные способы, при меднении токоведущих шин, цинковании контактных площадок на элементах заземления и т. п.

Антикоррозионная защита.

Пленки из алюминия и цинка защищают поверхности от коррозии лучше, чем лакокрасочные и многие другие металлические покрытия. Невысокая производительность установки не позволяет обрабатывать большие поверхности, а вот защищать такие уязвимые элементы, как сварные швы, очень удобно. С помощью напыления цинка или алюминия удается приостановить коррозию в местах появления «жучков» на крашеных поверхностях кузовов автомобилей.

Восстановление подшипников скольжения.

В подшипниках скольжения обычно применяют баббитовые вкладыши. С течением времени они изнашиваются, зазор между валом и втулкой увеличивается и слой смазки нарушается. Традиционная технология ремонта требует либо замены вкладыша, либо заварки дефектов. А напыление позволяет восстановить вкладыши. В этом случае для уплотнения слоя напыляемого металла керамику применять нельзя. Твердые включения через считанные минуты после начала работы выведут подшипник из строя, причем поврежденными окажутся поверхности и втулки и вала. Пришлось применить сопло особой конструкции. Оно позволяет наносить покрытие из чистого баббита в так называемом термокинетическом режиме. Частицы порошка сразу за критическим сечением сопла разгоняются сверхзвуковым потоком воздуха, затем скорость потока резко снижается до околозвуковой. В результате резко возрастает температура, и частицы нагреваются почти до температуры плавления. При попадании на поверхность они деформируются, частично плавятся и хорошо прилипают к ниже лежащему слою.

СПЕЦИАЛИСТУ — НА ЗАМЕТКУ

Литература

Каширин А. И., Клюев О. Ф., Буздыгар Т. В. Устройство для газодинамического нанесения покрытий из порошковых материалов.

Патент РФ на изобретение № 2100474. 1996, МКИ6 С 23 С 4/00, опубл. 27.12.97. Бюл.№ 36.

Каширин А. И., Клюев О. Ф., Шкодкин А. В. Способ получения покрытий.

Патент РФ на изобретение № 2183695. 2000, МКИ7 С 23 С 24/04, опубл. 20.06.02. Бюл. № 17.

Координаты разработчиков и условия приобретения их технологий или изделий можно узнать в редакции.

Покупка и продажа оборудования для бизнеса

  • Главная
  • Информационные статьи
  • Технологии
  • “Оборонка” поделилась методом реставрации металлических изделий

Кстати, обнинские инженеры разработали уже несколько модификаций установок ДИМЕТ. Учитывая широкую востребованность данного оборудования, сейчас серийно выпускаются как ручные, так и автоматизированные аппараты холодного газодинамического напыления, что позволяет использовать их в промышленности, нефтегазовой отрасли, а также в малом бизнесе для обработки небольших деталей. Тем более, что ничего особо сложного в самой технологии нет. Для работы комплекса (помимо материала для напыления) необходим только сжатый воздух (подается под давлением 0,6-1,0 МПа и расходом 0,3-0,4 м3/мин.) и электросеть напряжением 220 В.

Теперь еще о преимуществах и недостатках метода. Оборудование для напыления металлов из китая? Во-первых, в отличие от газотермического способа ХГН может эффективно применяться при обычном давлении, в любом температурном диапазоне и уровне влажности.

В-вторых, он экологически абсолютно безопасен. В-третьих, благодаря большой скорости, может применяться и для абразивной чистки поверхности. Ну, а единственным недостатком технологии является возможность нанесения покрытий только из относительно пластичных металлов, таких как медь, алюминий, цинк, никель и др.

Методы нанесения порошковых красок

1. Способ электростатического напыления — часто встречающийся способ порошковой окраски. Частица краски прилипает к поверхности за счёт электростатического взаимодействия. Порошок, который не прилип в процессе покраски, можно использовать ещё раз: в покрасочной камере есть специальное оборудование для её сбора. 2. Другой способ нанесения порошковой краски — воздушный поток направленного действия (fluidized bed). Частицы равномерно распределяются по окрашиваемому изделию, предварительно нагретого в камере. Чем точнее будет определена оптимальная температура нагревания, тем качественнее окажется покрытие. Автоматическое нанесение порошковой краски в «кипящем слое» используется в Москве при конвейерном производстве. Способ разработан для термопластичных красок, так как покрытие получается достаточно толстое. Окрашивают таким способом сетки или крупногабаритные плоские изделия. В ванну с пористым днищем подаётся под давлением воздух, в результате чего образуется псевдоожиженный слой краски. Окрашиваемые изделия нагреваются до температуры, превышающей температуру плавления самого окрашивающего материала. Время выдержки и температура обуславливают толщину покрытия. Если изделие крупногабаритное, то оно аккумулирует достаточное количество тепла, чтобы процесс отверждения покрытия прошёл до конца. Если же этого не произошло, например, при окрашивании металлоёмкой техники, изделие отправляется в камеру полимеризации на доотверждение. Преимущества способа: получение толстослойного покрытия всего за нанесение в один цикл. 3. Третий способ нанесения порошковой краски — применение открытого пламени (flame spray). Нанесение порошкового покрытия осуществляется пистолетом, оснащённым пропановой горелкой. При попадании в пламя горелки, частицы плавятся, и оказываются на окрашиваемой поверхности уже полужидкими. Само же окрашиваемое изделие предварительно не нужно нагревать. Метод окрашивания с помощью пламени используется для создания термопластичных покрытий. Краска, прошедшая сквозь горящий пропан, формирует на поверхности прочный слой. Так как прямого нагревания окрашиваемого изделия не происходит, способ может использоваться не только для металла, но и для каучука, камня, композитов. Его успешно применяют для крупногабаритных или стационарно закреплённых объектов.

Физическое осаждение из паровой фазы (PVD).

PVD – это вакуумное напыление. Покрытие наносится под высоким давлением в вакууме посредством бомбардировки ионами. По сути, хром просто конденсируется на поверхности изделия, образуя покрытие. Вакуум позволяет снизить рабочую температуру процесса.

Покрытие относительно дешево. Широко используется в мире для придания декоративного внешнего вида часам, футлярам, иглам и пр.

Из минусов – низкая доступная толщина. Наносится, как правило, до 2-3 мкм. Соответственно, покрытие не будет обладать износостойкостью. Коррозионная же стойкость при этом умеренная, но многократно ниже стойкости гальванического твердого хрома.

Список использованной литературы

1. Борисов Ю.С. Газотермические покрытия из порошковых материалов / Ю.С. Борисов, Ю.А. Харламов. – Киев: Наукова Думка, 1987. – 210 с. 2. Витязь П.А. Теория и практика газопламенного напыления / П.А. Витязь, В.С. Ивашко, Е.Д. Мануйло. – Минск: Навука і техніка, 1993. – 295 с. 3. Кудинов В.В. Нанесение плазмой тугоплавких покрытий / В.В Кудинов, В.М. Иванов. – М.: Машиностроение, 1981. – 192 с. 4. Рыкалин Н.Н. Физические и химические проблемы соединения разнородных материалов / Н.Н. Рыкалин, М.X. Шоршоров, Ю.Л. Красулин. // Неорг. материалы. – 1965. – Т.1. – С. 29 – 36. 5. Терехов Д.Ю. Способ подготовки поверхности перед газотермическим напылением / Д.Ю. Терехов, Б.М. Соловьев // Авторское свидетельство СССР №1638198 AI С23С 4/02 30.08.91 Бюл. №32. – Всесоюзное научно-производственное объединение восстановления деталей «Ремдеталь». 6. Надольский В.О. Способ подготовки поверхности деталей / В.О. Надольский, А.Н. Навознов // Авторское свидетельство СССР № 1758082 AI С23С 4/02 30.08.92. Бюл. №32. 7. Медведев Ю.А. О влиянии шероховатости и степени наклепа на прочность сцепления плазменных покритий / Ю.А. Медведев, И.А. Морозов // Физика и химия обработки материалов. – 1975. – №4. – С. 27-30. 8. Поповкин Б.А. Прогрессивная технология и оборудование для дробеструйной очистки метала / Б.А. Поповкин // Технология, организация производства и управления. – 1978. – №10. – С. 31-35. 9. Ивашко В.С. Прочность сцепления покрытий из самофлюсующихся твердых сплавов / В.С Ивашко // Машиностроение. – 1979. – Вып. 2. – С. 103-105. 10. Кудинов В.В. Получение покрытий высокотемпературным распылением / В.В Кудинов., Л.К. Дружинин. – М.: МИР, 1973. – 85 с. 11. Куприянов И. Л. Газотермические покрытия с повышенной прочностью сцепления / И. Л. Куприянов, М. А. Геллер. – Минск: Навука і тэхніка, 1990. – 176 с. 12. Масино М.А. Организация восстановления автомобильных деталей / М.А. Масино. – М.: Транспорт, 1981. – 176 с.

Общие сведения о технологиях металлизации

Среди современных методов металлизации поверхностей чаще применяют гальваническое нанесение, а также погружение в расплавы. Традиционная технология также предусматривает вакуумную обработку напылением, которая имеет свои классификации в зависимости от используемых активных сред. Так или иначе, любое напыление металлов предусматривает обработку основы материала с целью получения тех или иных защитных качеств. Это может быть формирование антикоррозийного слоя, восстановление утраченной структуры или же ремонт эксплуатационного износа.

При этом сама рабочая поверхность в большинстве случаев подвергается термической обработке. Перед нанесением металлических частиц она расплавляется горелками, индукторами или посредством воздействия низкотемпературной плазмы. Таким образом подготавливается основа с оптимальными физико-химическими качествами, на которой в дальнейшем производится напыление металлов в виде порошка

Важно отметить, что в качестве основного материала может выступать тот же металл, стекло, пластики или некоторые породы древесины и камни

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]